Package: BayesGPfit 1.1.0

BayesGPfit: Fast Bayesian Gaussian Process Regression Fitting

Bayesian inferences on nonparametric regression via Gaussian Processes with a modified exponential square kernel using a basis expansion approach.

Authors:Jian Kang [aut, cre], John Burkardt [ctb]

BayesGPfit_1.1.0.tar.gz
BayesGPfit_1.1.0.zip(r-4.5)BayesGPfit_1.1.0.zip(r-4.4)BayesGPfit_1.1.0.zip(r-4.3)
BayesGPfit_1.1.0.tgz(r-4.5-x86_64)BayesGPfit_1.1.0.tgz(r-4.5-arm64)BayesGPfit_1.1.0.tgz(r-4.4-x86_64)BayesGPfit_1.1.0.tgz(r-4.4-arm64)BayesGPfit_1.1.0.tgz(r-4.3-x86_64)BayesGPfit_1.1.0.tgz(r-4.3-arm64)
BayesGPfit_1.1.0.tar.gz(r-4.5-noble)BayesGPfit_1.1.0.tar.gz(r-4.4-noble)
BayesGPfit_1.1.0.tgz(r-4.4-emscripten)BayesGPfit_1.1.0.tgz(r-4.3-emscripten)
BayesGPfit.pdf |BayesGPfit.html
BayesGPfit/json (API)

# Install 'BayesGPfit' in R:
install.packages('BayesGPfit', repos = c('https://kangjian2016.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/kangjian2016/bayesgpfit/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda-Forge:

cpp

4.40 score 3 stars 1 packages 56 scripts 297 downloads 14 exports 1 dependencies

Last updated 3 years agofrom:8cb69a5b8c. Checks:1 OK, 11 ERROR. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 05 2025
R-4.5-win-x86_64ERRORMar 05 2025
R-4.5-mac-x86_64ERRORMar 05 2025
R-4.5-mac-aarch64ERRORMar 05 2025
R-4.5-linux-x86_64ERRORMar 05 2025
R-4.4-win-x86_64ERRORMar 05 2025
R-4.4-mac-x86_64ERRORMar 05 2025
R-4.4-mac-aarch64ERRORMar 05 2025
R-4.4-linux-x86_64ERRORMar 05 2025
R-4.3-win-x86_64ERRORMar 05 2025
R-4.3-mac-x86_64ERRORMar 05 2025
R-4.3-mac-aarch64ERRORMar 05 2025

Exports:GP.Bayes.fitGP.create.colsGP.eigen.funcs.fastGP.eigen.funcs.fast.orthGP.eigen.valueGP.fast.Bayes.fitGP.generate.gridsGP.plot.curveGP.plot.curvesGP.predictGP.simulate.curve.fastGP.simulate.curves.fastGP.std.gridsGP.summary

Dependencies:lattice